FaresMorcy
  • Whoami
  • Footprinting Labs
    • Lab - Easy
    • Lab - Medium
    • Lab - Hard
  • Shells & Payloads
    • The Live Engagement
  • Password Attacks
    • Lab - Easy
    • Lab - Medium
    • Lab - Hard
  • Active Directory Enumeration & Attacks
    • Active Directory Enumeration & Attacks
    • AD Enumeration & Attacks - Skills Assessment Part I
    • AD Enumeration & Attacks - Skills Assessment Part II
  • SOC Hackthebox Notes & Labs
    • Security Monitoring & SIEM Fundamentals Module
    • Windows Event Logs & Finding Evil Module
    • Introduction to Threat Hunting & Hunting With Elastic Module
    • Understanding Log Sources & Investigating with Splunk Module
      • Introduction To Splunk & SPL
      • Using Splunk Applications
      • Intrusion Detection With Splunk (Real-world Scenario)
      • Detecting Attacker Behavior With Splunk Based On TTPs
      • Detecting Attacker Behavior With Splunk Based On Analytics
      • Skills Assessment
    • Windows Attacks & Defense
      • Kerberoasting
      • AS-REProasting
      • GPP Passwords
      • GPO Permissions/GPO Files
      • Credentials in Shares
      • Credentials in Object Properties
      • DCSync
      • Golden Ticket
      • Kerberos Constrained Delegation
      • Print Spooler & NTLM Relaying
      • Coercing Attacks & Unconstrained Delegation
      • Object ACLs
      • PKI - ESC1
      • Skills Assessment
    • Intro to Network Traffic Analysis Module
    • YARA & Sigma for SOC Analysts Module
      • Developing YARA Rules
      • Hunting Evil with YARA (Windows Edition)
      • Hunting Evil with YARA (Linux Edition)
      • Sigma and Sigma Rules
      • Developing Sigma Rules
      • Hunting Evil with Sigma (Chainsaw Edition)
      • Hunting Evil with Sigma (Splunk Edition)
      • Skills Assessment
  • TryHackme SOC 1
    • TShark
      • TShark: The Basics
      • TShark: CLI Wireshark Features
      • TShark Challenge I: Teamwork
      • TShark Challenge II: Directory
    • Tempest
    • Boogeyman 1
    • Boogeyman 2
    • Boogeyman 3
  • TryHackme SOC 2
    • Advanced Splunk
      • Splunk: Exploring SPL
      • Splunk: Setting up a SOC Lab
      • Splunk: Dashboards and Reports
      • Splunk: Data Manipulation
      • Fixit
    • Advanced ELK
      • Slingshot
    • Threat Hunting
      • Threat Hunting: Foothold
      • Threat Hunting: Pivoting
      • Threat Hunting: Endgame
  • TryHackme Rooms
    • Investigating Windows
    • Splunk 2
    • Windows Network Analysis
  • Powershell Scripting Fundamentals
  • SANS SEC504 & Labs
    • Book one
      • Live Examination
      • Network Investigations
      • Memory Investigations
      • Malware Investigations
      • Accelerating IR with Generative AI
      • Bootcamp: Linux Olympics
      • Bootcamp: Powershell Olympics
    • Book Two
      • Hacker Tools and Techniques Introduction
      • Target Discovery and Enumeration
      • Discovery and Scanning with Nmap
      • Cloud Spotlight: Cloud Scanning
      • SMB Security
      • Defense Spotlight: Hayabusa and Sigma Rules
    • Book Three
      • Password Attacks
      • Cloud Spotlight: Microsoft 365 Password Attacks
      • Understanding Password Hashes
      • Password Cracking
      • Cloud Spotlight: Insecure Storage
      • Multipurpose Netcat
    • Book Four
      • Metasploit Framework
      • Drive-By Attacks
      • Command Injection
      • Cross-Site Scripting
      • SQL Injection
      • Cloud Spotlight: SSRF and IMDS
    • Book Five
      • Endpoint Security Bypass
      • Pivoting and Lateral Movement
      • Hijacking Attacks
      • Establishing Persistence
      • Defense Spotlight: RITA
      • Cloud Spotlight: Cloud Post-Exploitation
  • SANS SEC511 & Labs
    • Resources
      • Primers
      • References
      • Tools
        • Network
        • Elastic Stack
      • Printable Versions
    • Book One
      • Part One
      • Part Two
      • Part Three
    • Book Two
      • Part One
      • Part Two
      • Part Three
      • Part Four
    • Book Three
      • Part One
      • Part Two
      • Part Three
      • Part Four
    • Book Four
      • Part One
      • Part Two
      • Part Three Lab
      • Part Four Lab
    • Book Five
      • Part One Lab
      • Part Two Lab
      • Part Three Lab
  • CyberDefenders
    • XXE Infiltration Lab
    • T1594 Lab
    • RetailBreach Lab
    • DanaBot Lab
    • OpenWire Lab
    • BlueSky Ransomware Lab
    • Openfire Lab
    • Boss Of The SOC v1 Lab
    • GoldenSpray Lab
    • REvil Lab
    • ShadowRoast Lab
    • SolarDisruption Lab
    • Kerberoasted Lab
    • T1197 Lab
    • Amadey Lab
    • Malware Traffic Analysis 1 Lab
    • Insider Lab
    • Volatility Traces Lab
    • FalconEye Lab
    • GitTheGate Lab
    • Trident Lab
    • NerisBot Lab
  • Practical Windows Forensics
    • Data Collection
    • Examination
    • Disk Analysis Introduction
    • User Behavior
    • Overview of disk structures, partitions and file systems
    • Finding Evidence of Deleted Files with USN Journal Analysis
    • Analyzing Evidence of Program Execution
    • Finding Evidence of Persistence Mechanisms
    • Uncover Malicious Activity with Windows Event Log Analysis
    • Windows Memory Forensic Analysis
  • Hackthebox Rooms
    • Campfire-1
    • Compromised
    • Brutus
    • Trent
    • CrownJewel-1
  • WEInnovate Training
    • Weinnovate - Active Directory Task One
    • Build ELK Lab
      • Configure Elasticsearch and Kibana setup in ubuntu
      • Configure Fluent-Bit to send logs to ELK
      • Set up Winlogbeat & Filebeat for log collection
      • Send Logs from Winlogbeat through Logstash to ELK
      • Enable Windows Audit Policy & Winlogbeat
      • Elasticsearch API and Ingestion Pipeline
    • SOAR
      • Send Alerts To Email & Telegram Bot
      • Integrate Tines with ELK
    • SOC Practical Assessment
    • Lumma C2
    • Network Analysis
  • Build ELK Lab
    • Configure Elasticsearch and Kibana setup in ubuntu
    • Configure Fluent-Bit to send logs to ELK
    • Set up Winlogbeat & Filebeat for log collection
    • Send Logs from Winlogbeat through Logstash to ELK
    • Enable Windows Audit Policy & Winlogbeat
    • Elasticsearch API and Ingestion Pipeline
  • Build Home Lab - SOC Automation
    • Install & configure Sysmon for deep Windows event logging
    • Set up Wazuh & TheHive for threat detection & case management
    • Execute Mimikatz & create detection rules in Wazuh
    • Automate everything with Shuffle
    • Response to SSH Attack Using Shuffle, Wazuh, and TheHive
  • Home Lab (Attack & Defense Scenarios)
    • Pass-the-Hash Attack & Defense
    • Scheduled Task Attack & Defense
    • Kerberoasting Attack & Defense
    • Kerberos Constrained Delegation
    • Password Spraying Attack & Defense
    • Golden Ticket Attack & Defense
    • AS-REProasting Attack & Defense
    • DCSync Attack & Defense
  • Home Lab (FIN7 (Carbanak Group) – Point of Sale (POS) Attack on Hospitality Chains)
  • Home Lab (Lumma Stealer)
Powered by GitBook
On this page
  1. Hackthebox Rooms

Compromised

Previous Campfire-1 NextBrutus

Last updated 1 month ago

Sherlock Scenario

Our SOC team detected suspicious activity in Network Traffic, the machine has been compromised and company information that should not have been there has now been stolen – it’s up to you to figure out what has happened and what data has been taken.

Q1) What is the IP address used for initial access?

Let's capture only SYN packets, those representing the first step in a TCP handshake that do not include an ACK flag, indicating an initial connection request.

ip.src != ip.dst && (tcp.flags.syn == 1 && tcp.flags.ack == 0)

Let's filter by this IP.

(ip.src == 162.252.172.54 or ip.dst == 162.252.172.54) and http

Next, we will trace the HTTP stream for further analysis.

Answer: 162.252.172.54

Q2) What is the SHA256 hash of the malware?

From File > Export Objects > HTTP

Or using tshark.

tshark -r capture.pcap --export-objects http,exported_files
sha256sum 6ctf5JL

Answer: 9b8ffdc8ba2b2caa485cca56a82b2dcbd251f65fb30bc88f0ac3da6704e4d3c6

Q3) What is the Family label of the malware?

Let's perform a search on VirusTotal using the hash value.

Answer: Pikabot

Q4) When was the malware first seen in the wild (UTC)?

Answer: 2023-05-19 14:01:21

Q5) The malware used HTTPS traffic with a self-signed certificate. What are the ports, from smallest to largest?

HTTPS traffic uses SSL/TLS, typically on port 443, but malware may use non-standard ports. We need to list all TCP ports involved in SSL/TLS traffic.

Self-signed certificates are exchanged during the TLS handshake (Client Hello, Server Hello, Certificate). To identify self-signed certificates, we need to inspect the TLS certificate packets. Let's list TLS Handshake Packets with Certificates:

tshark -r capture.pcap -Y "ssl.handshake.certificate" -T fields -e ip.src -e ip.dst -e tcp.srcport -e tcp.dstport

Answer: 2078, 2222, 32999

Q6) What is the id-at-localityName of the self-signed certificate associated with the first malicious IP?

Let's apply a filter using the first IP address listed above: 45.85.235.39.

ip.addr == 45.85.235.39 and tls.handshake.certificate

We can also do this using tshark.

tshark -r capture.pcap -Y "ip.addr == 45.85.235.39 and ssl.handshake.certificate" -T fields -e ssl.handshake.certificate | xxd -r -p | openssl x509 -text -noout

Answer: Pyopneumopericardium

Q7) What is the notBefore time(UTC) for this self-signed certificate?

Or using tshark.

Answer: 2023-05-14 08:36:52

Q8) What was the domain used for tunneling?

dns

Answer: dns